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Notation

a Angle of incidence deg

r Circulation m2 /sec

r. Circulation density at a given angle m 2/sec/rad

e Angle of strut deg or radians

0 Separation angle deg or radians

OBV Centre of total circulation - angular
position deg or radians

Vorticity rad/sec

Maximum vorticity rad/sec

ao,blc 2,d3.. Coefficients in empirical equations various

D Body diameter metres

L Length of body metres

q Induced velocity at radius Rv from

vortex centre metres/sec

r Radius from body axis to position of
probe metres

r* Local vortex core radius (radius
for maximum induced velocity) metres

rl Non-dimensional rate of turn or turn
parameter; L/S

R Local radius of body metres

R1  Centre of local vortex - radial
position metres

RBV Centre of total circulation -

radial position metres

Rv  Radius from the centre of the vortex metres

RF Non-dimensional radius from the
v centre of the vortex; Rv/r*

S Arm radius; radius of turn metres

i£i



V
Free stream velocity in the X direction metres/sec

v Velocity induced in Y direction metres/sec

w Velocity induced in Z direction metres/sec

x Longitudinal distance from nose of
body; positive aft metres

x' Non-dimensional distance from nose
to body: x/L

X axis which the vortex lies along

Y
Transverse Plnes

iv
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ANALYSIS OF EXPERIMENTS TO MEASURE
BODY VORTICES IN CURVED FLOW

By B Ward
A R J M Lloyd

1. INTRODUCTION

Experiments on the Rotating Arm in the Manoeuvring Tank at ARE(H)
provided data on vortices shed from a body of revolution in curved
flow. The experiments in support of SUBSIM (Reference 1) took place
during 1986 (Reference 2) and 1987 (Reference 3). Reference 4 also
gives an extensive discussion of these experiments. This memorandum

describes a detailed analysis of the experiment results.

2. VORITICITY; SOME BACKGROUND READING

2.1. Characteristics of Vortices (See Reference 4)

A vortex is shown in Figure 1 with the free stream velocity u in the X
direction. Velocities v and w are induced in Y,Z directions
respectively. At a radius R = V'-YZ+ metres from the centre of theV

vortex a velocity q = v-2+w2 is induced (see Figure 2a). From

classical potential theory q = r/2tRv metres/sec which leads to

infinite induced velocity and shear at the origin as shown in
Figure 2b.

In reality viscous effects stop these large velocities from occurring.
It is assumed that the central area of the vortex rotates more or less
as a solid core with the induced velocity close to the centre
increasing linearly with the radial distance from the centre. This is
simulated by the modified equation

q r [1 - exp 126 R'jj metres/second

where

R= Rv/r*

and r* is the core raditis of the viscous vortex (defined as the
radius at which the induced velocity q is a maximum).

Here the induced velocity is reduced to zero at the centre but reaches

its inviscid value at large distances from the centre.
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Figure 1

VORTEX NOTATION

IN4VISCIIJ

q

Figure 2a Figure 2b

VORTEX FORNULAT IONS
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2.2. Body Vortices

If the body is at a moderate angle of incidence and turn rate the

boundary layer on the leeward surface separates as shown in Figure 3.
The location of the separation line may be quantified in terms of the

'separation angle' 9.. Vorticity shed from the boundary layer is

convected away and coallesces to form a diffuse pair of vortices with

cores almost parallel to the body axis. The vortices' strength
increases towards the tail of the body as more vorticity is added.

STRENGTH

VORTEX
STARTS / CONSTANT'\'

VORTEX
SHED

Figure 3

BODY VORTEX
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3. THE EXPERIMENT

A 5.0 metre long model body of revolution was attached to the Rotating

Arm as shown in Figure 4a.

Table 1 gives the model dimensions.

Table 1

MODEL DIMENSIONS (LENGTH. 5 m; MAXIMUM RADIUS, 0.294 m)

x1 R (m)

0 0

0.05 0.206

0.10 0.266

0.15 0.291

0.20-0.65 0.294

0.70 0.289

0.75 0.274

0.80 0.247

0.35 0.206

0.90 0.151

0.95 0.084

1.00 0

A Freestone vorticity probe (Reference 5) was designed and built with

a radius of 10 mm. The probe was attached to a strut which was built
to provide measurements out to a radius of 1.5 x body diameter. An
inclinometer was used to set up the strut such that in the position
referred to as 0 = 90 degrees it protruded vertically from the top of
the body and at 0 = 0 degrees it was horizontal on the inboard side of
the model, (see Figure 4b).

Three different strut-body stations were used in the test conditions

(a) x' = 0.925, (b) x' = 0.85, (c) x' = 0.7 where x' = x/L (see
Figure 4b).

Incidence angle a was set with the nose towards the centre of the arm
(see Figure 4c).

The probe was traversed from close to the body surface to the limits
of the strut where the vorticity was expected to be zero. This was
done with the strut at angles of 0, 10, 20 .... 90 degrees. The arm
was rotated counter-clockwise. The non-dimensional rate of turn or
turn parameter r' was varied by changing the arm radius S. About 130
data readings were obtained for each test condition.

4
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4. TYPICAL DATA SET

I
I I

I .LIMIT OF TRAVERSE
V 'MISSING PEAK

LOCAL
BODY
RADIUS PLATEAU"

I ZERO AT
MAXIMUM RADIUS

r .S

NO MEASUREMENTS IN
THIS REGION

Figure 5

TYPICAL VORTICITY TRAVERSE

Figure 5 shows a sketch of a typical vorticity traverse (plot of
vorticity versus radius for a given angle 0). A number of salient
features are apparent;

a. The peak value has probably been missed due to the limited
number of data values.

b. The physical dimensions of the probe precluded any

measurements close to -he local body st'face.

c. The traverses appear to come down to a 'plateau' as the
radius increases, whereas it would have been expected that they
would decrease smoothly to zero at the 'edge' of the vortical
flow. This is probably associated with zero errors in the
Freestone probe. It was found in Reference 2 that the probe
gave small levels of 'vorticity' in uniform flow when no vorticity
was expected and that these zero errors were functions of the

flow direction at the probe. A simple correction was devised
based on the results obtained at the outer limits of the strut,
and this was applied to each traverse, forcing the vorticity at
r = 1.5 x D to be zero. However, the flow direction changes as
the probe is moved towards the body and this will affect the zero
error correction. No simple method of quantifying this effect

has been devised.

To overcome these shortcomings the data were faired to a more expected

form and ensuring smooth variations as each of the parameters was
varied. This Involved;

6
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a. Inserting estimated additional points close to the local
radius of the body.

b. Interpolating extra points throughout the curve including,
at times, a point for peak vorticity.

c. Bringing traverses down to zero at the apparent edpr of the
vortical flow.

d. Ensuring that the estimated peak vorticity increased
smoothly with strut angle.

5. DATA ANALYSIS PROGRAM

5.1. Introduction

A FORTRAN program entitled INTERP was developed on the ARE(H) PRIME
9955 Computer to fair the data. The fairing involved human judgement
in altering and inserting data points depending on the trend of the
curve and the expected behaviour of the traverses.

The program used the GINO graphics package which enabled plots of
vorticity traverses to be displayed on the VDU, analysed, subsequently
altered and analysed further.

5.2. Interpolating Extra Data Points

Each vorticity traverse (6 = 10 degrees to 90 degrees) was analysed.
When it was considered appropriate cubic polynomials were calculated
to fit all sets of four adjacent points (1,2,3,4), (2.3,4,5) etc. for
the particular angle under examination. This involved taking the four
points (Figure 6) deriving a system of equations and then solving
them. The resulting cubic polynomial C(r) = a3r

3 + a2r
2 + air + ao

was used to calculate an additional point between the middle two
points, (Figure 7).

r 1

Figures 6 and 7

INTERPOLATION OF EXTRA POINT
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Doing so throughout the curve, N-3 extra points were interpolated
(where N is the total number of original data points). These extra

points ensured a more accurate numerical integration and in certain
cases a more reasonable peak value for vorticity was achieved.

5.3. Additional Points Close to the Body Surface

Figures 8 and 9 show how a traverse for a strut angle of, say
30 degrees, was extrapolated to the body surface. In this example the
trend of the curve shown implies that the vorticity is negative at the
body surface.

r : r

Figures 8 and 9

EXTRAPOLATING EXTRA POINTS CLOSE TO BODY SURFACE
FOR STRUT ANGLE O= 30 DEGREES

Figures 10 and 11 show how a traverse for a high strut angle of, say

90 degrees, was extrapolated to the body surface. At such a strut
position it was assumed that the vorticity would peak at the body
surface. Hence the trend of the curve will be as shown in Figure 11.
The extrapolated maximum vorticity at the body surface at angles of
80 degrees and 90 degrees was subsequently reassessed by the method
described in 5.5.

I I

Figures 10 and 11

EXTRAPOLATING EXTRA POINTS CLOSE TO BODY SURFACE

FOR STRUT ANGLE O= 90 DEGREES
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5.4. Eliminating the Zero Plateau

The traverse was brought down to zero at the apparent outer edge of

the vortical flow. No formal procedure was employed, but the gradient
of the curve was used to estimate by eye where the traverse was

brought to zero as shown in Figures 12 and 13. In general, the
traverse was brought down more sharply at higher strut angles

eg 80 degrees, 90 degrees.

r r

Figures 12 and 13

ELIMINATING ZERO PLATEAU

50

45 -.

40

3S

30

S25

i= 20

o> 15
~10

0

0 10 20 30 40 50 60 70 S0 W
THETA DEG

Figure 14

ESTIMATED PEAK VORTICITY (x' - 0.925 , r' - 0.3. a = 7.5 DEGREES)
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Q 25 -

-20

o 15

10

0 10 20 30 40 50 60 70 80 90

THETA DEG

Figure 15

ADJUSTED VALUES OF PEAK VORTICITY
(x' = 0.925, r' = 0.3, a = 7.5 DEGREES)

5.5. Increasing the Peaks of Vorticity Traverses

A regression polynomial of the form CAX = bo+b1O+b2oz+b 36
3+b4e

4+b5e5
was fitted to the estimated peak vorticity data for each test
condition. An example is shown in Figure 14. It was argued that the
peak vorticity should increase monotonically up to a maximum at about
8 = 90 degrees where the boundary layer separates from the body
surface. If this is the case the estimated peak values at
0 - 80 degrees and 90 degrees are clearly too low. Recalling that
these values were estimates based on extrapolation (as shown in
Figures 10 and 11) it was considered justifiable to increase their
values as shown in Figure 15.

The regression curve was used to assess whether any further
adjustments to the estimated peak levels were required at other values
of S. In Figure 15 an example of such an adjustment can be seen for
0 - 40 degrees.

In certain cases these changes demanded reassessments of earlier
decisions. In particular Increasing the peak vorticity levels at high

10
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values of 0 often made reassessment of the position of the edge of the
vortical flow necessary.

An artist's impression of the fairing of vorticity traverses can be

seen in Figures 16 and 17. For further examples of the effects of
fairing on traverses see Figures 18a to 18c.

5.6. Circulation

5.6.1. Local Circulation Density

In Figure 19 the circulation residing within a sector defined by the
small angle de is

rodO =f C r dr dO m2 /sec

0

and the local circulation density is

r6 = f C r dr mz/sec/rad

0

r r

Figure 19

CIRCULATION IN A SECTOR

This local circulation density was calculated, like all other

integrals in the analysis, using Trapezoidal rule.

Both negative and positive circulation densities were calculated.

As a zero C-value was not always present in data where traverses cut
the r-axis on the inboard side of the curve the method of 'regula
falsi' was used to calculate the intersecting point as shown in
Figure 20.

C1 (r1 -ro)
r2  = rl - , - O

r

Figure 20

REGULA FALS1
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A graph of the circulation density against angle was plotted for each
experiment condition and an example is shown in Figure 21.

0 "60

0.55

* 0"50

0-45

0.40

0.30
~' 0.25t

0-20-

0

0 10 20 30 400O 600 80 90

THETA DEG

Figure 21

CIRCULATION DENSITY AGAINST STRUT ANGLE

(x' = 0.925. r' = 0.3, a = 7.5 DEGREES)

5.6.2. Total Circulation

The total circulation was estimated from

7r/2
r = f re dO mz/sec

0

Results for all test conditions at x' = 0.925 are shown in Figure 22.

17
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00

0
0010 0.20 0-30 0-40 0*50 0.60

TURN PARAM4ETER r

Figure 22

TOTAL CIRCULATION AGAINST TURN PARAMETER
FOR VARYING VALUES OF INCIDENCE ANGLE

5.7. Vortex Centres

5.7.1. Local Vortex Centre - Centre of Circulation Density

The radial location of the Centre of the circulation density at a
given angle 6 is;

f (rg dr

Ri . 0 ODmetres

I ?r dr
0

(See Figures 19 and 23)



Figure 23

LOCAL VORTEX CENTRE

Values were calculated for all test conditions and an example is shown

in Figure 24.

5.7.2. Total Vortex Centre - Centre of Total Circulation

The centre of the total circulation was calculated using the following

integrals;

OD' 7T/

f f r2 0 dO dr

(RO)B, 0 0 metres.radians
IT/ 2 C',

I I r dr dO
o o

f f r 2 dr dO

RBV o0 0 metres (centre of circulation-radial

I f r dr dO position)
o o

OBV (RO)BV radians (centre of circulation-angular position)

RBV

Results for all test conditions at x' = 0.925 are shown in Figures 25

and 26. (For convenience OBV is plotted in degrees).

19
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Figure 24

LOCAL VORTEX CENTRE AGAINST STRUT ANGLE
(x' = 0.925, r' = 0.2, a = 7.5 DEGREES)

5.8. Vortex Core Radius

According to Reference 6 the peak vorticity and the vortex core radius
are related by the formula

1.26 r rad/sec
CMAX - r r

Therefore

= 1.26 r0  metres
C 14AX

Figure 27 shows core radii calculated in this way for a particular
test condition.

20
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Figure 27

VORTEX CORE RADIUS AGAINST STRUT ANGLE
(x' =0.925, r' =0.3. a =2.5 DEGREES)
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6. EMPIRICAL EQUATIONS TO REPRESENT THE RESULTS

6.1. Circulation Density

Plots of circulation density against strut angle for varying test

conditions were examined (see Figures 21 and 28). The trend of the
plots suggested a sine curve would be appropriate with varying
amplitude determined by the parameters r', a and x'. The following
equation was determined.

r= [c2r'2 + c1r' +co + [ d 2 r12 + dir' 4-do Ial

[sin f 3 03 *- f2 e 2 
+ f 1 ]1 . I[go i gix' (x'>,0.65) m21

1sec/rad

r. = 0 (x'<0.65)

(0, a in degrees)

The coefficients of the above equation are noted in the following

table.

c 2  c1  co d2 Idi do f f 2  f 0 9

-15.0 9.3 j -1.4 2.0 -1.08 0.208 0.00012 -0.037 4.23 -2.398 3.66

NOTE:

r. 0 for all values of 0 at x' = 0.65 where circulation becomes zero.

The quality of the fit can be seen in the example shown in Figure 28.

6.2. Total Circulation

For x' = 0.925, plots were made of the circulation against turn parameter
for each angle of incidence as shown in Figure 22.

The values appeared very consistent for 2.5 degrees, 5.0 degrees and
7.5 degrees angles of incidence. As data for 0 degrees and 10 degrees
had come from the 1987 experiment when the probe was known to have
been damaged, it was decided to base any further mathematical models
largely on the trends of the three middle angles, but still taking
0 degrees and 10 degrees Into account.

A regression polynomial of degree 5 with respect to r' fitted the data

for a - 2.5 degrees, 5.0 degrees, 7.5 degrees very well and the
required behaviour as r'- 0 was satisfied. The constant term of the
polynomial was varied according to a.

24



F

I 0.60.

o .55

0 "50"

" '( 0.45-
0.4S-

S0-40-
&A

. 0'35-

~ 0'20

z
ol 0-2S-

-20-

G 0.1s0

0-10-

20 40 60 80 100 120

THETA DEG

Figure 28

CIRCULATION DENSITY AGAINST STRUT ANGLE
(x' = 0.925, r' = 0.4, a = 5 DEGREES)

The equation for x' = 0.925 is as follows.

(x,__0.925) = h5 r'%+ h4r'4+ h3 r'
3+ h2 r'

2 + h, r' j2a
2 i- jia

M2/sec (a in degrees)

A more general equation valid for all x' is as follows.

(x,=0.925) (klx'+ko) (x')0.65)

r m2/sec
(x'<O.65)

.12

,. 25



The coefficients of the above equations are noted fh the following

table.

h5 h4  h3  h2  hi j2  Jl kl ko

258.78 -279.81 99.38 -11,81 0.48 0.004 0.018 3.67 -2.39

The quality of the fit of the equation at x' = 0.925 can be seen from
Figure 22.

6.3. Local Vortex Centres

Plotting the local vortex centres radial position against strut angle
for varying conditions it was immediately apparent (see Figure 24)
that a linear equation was appropriate.

The following equation was derived.

(lo+1la+(mo+mla)r').(no+nlx')

+((po+Pl a + (qo+qja)r')e).(So+Slx ')

R I= metres

+R (x'0.65)

R (x'<0.65)

(0 and a in degrees)

The coefficients of the above equation are noted in the following

table.

10 11 m0  m 1  no n1

30.864 15.97 212.89 - 12.4 - 0.00233 0.00359

PO  P1  qo ql so Sl

- 0.344 - 0.165 - 1.857 0.0397 - 0.00229 0.00355

At x' = 0.65 where the circulation becomes zero the value of R 1 will

equal the local body radius for all values of 0.

The quality of fit (see Figure 24) of the equation was consistently

good for all test conditions with x' = 0.925.

6.4. Total Vortex Centre

The radial locations of the centre of circulation (for x' = 0.925)
were plotted against turn parameter for each angle of incidence
(Figure 25).
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A regression polynomial of degree 3 was found to fit data for
a = 2.5 degrees, 5.0 degrees, 7.5 degrees with x' - 0.925 very well.
The following equation was developed,

RBVWx 2 = t3 r'
3 + t2 r'2 + tI r' + v2a

2 + vla + 0.118 metres

(a in degrees)

and more generally

(exp(z3x'3 + z2x'2 + ZlXI + zO ) + WO )

R metres
RBV = .(t3 r'+ t2 r'

2 + t2 r' + v 2 a
2 + v2 ) 0.118

+ R (x')0.65)

R (x'<0.65)

(a in degrees)

The coefficients of the above equations are noted in the following

table.

t3  t2  t I V2  v1

1.391 - 1.353 0.4492 0.00064 0.00296

z3  z2  zI  z0  WO

5.06 - 8.0 5.62 - 1.67 - 0.993

Note that at x' = 0.65 the radial position is equal to the local
radius of the body.

Likewise from plots of the 0 position (for x' = 0.925) against turn
parameter for each angle of incidence, (see Figure 26), the following
linear equation was developed.

SBV =Air' + B3a
3 + B2a2 + B1a + B0  deg

(x' = 0.925)

(a In degrees)

27



A general equation was developed.

GBV ' [cos[F2X2 + F x o + F0J +

J r + B3a
3 + B 2aa + B Ia + B01 deg (x'>0.65)

(a in degrees)

The coefficients of the above equations are noted in the following table.

A 1  B3  B 2  B 1  B 0  F2  F 1  F 0

7.76 0.024 -0.162 -2.25 47.68 6.724 -9.546 4.648

6.5. Vortex Core Radius

By calculating the core radius over angles 10 degrees to 90 degrees
for all test conditions and by analysing the resulting values a linear
equation appeared appropriate.

The following general equation was developed.

= x [G0 + Hoa + Joe] metres (x'>0.65)

(a,9 in degrees)

The coefficients of the above equation are noted in the following
table.

GO 0 H0 J0

0.0526 0.00095 -0.00046

The quality of the fit can be seen from Figure 27. It should be noted
that the equation did not fit all the test condition data as well as
that of the example but as mentioned previously not all the data can
be considered very reliable. The above equation was derived from
analysis of the most consistent data. Nevertheless the equation does
reflect the linear trend and magnitude of most of the results.

7. CONCLUSIONS

Experiments on the Rotating Arm in the Manoeuvring Tank at ARE(H)

provided data on vortices shed from a body of revolution in curved
flow. The data contained apparent shortcomings as explained in this
report. Methods as described above were used to fair the data to a
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more expected form. The resulting faired data was used to developempirical equations for local circulation density, total circulation
density, apparent centre of total circulation, local vortex centre and
local vortex core radius.

These expressions will be incorporated in the SUBSIM Computer program
in due course.
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